\square
Total No. of Questions: 09

B.Tech. (2011 onwards) (Sem.-1)
 ENGINEERING MATHEMATICS-I
 Subject Code : BTAM-101
 Paper ID : [A1101]

Time : 3 Hrs.
Max. Marks: 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C. have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B \& C.
5. Use of non programmable calculator is allowed.

SECTION-A

1. Write briefly :
(a) Find the radius of curvature at the origin for the curve :

$$
y^{4}+x^{3}+a\left(\mathrm{x}^{2}+y^{2}\right)-a^{2} y=0
$$

(b) Find the area of the cardioad $r=a(1-\cos \theta)$
(c) Find the volume of a sphere of radius ' a '.
(d) If $u=x \log x y$, where $x^{3}+y^{3}+3 x y=1$, find $\frac{d u}{d x}$.
(e) Find the equations of the tangent and normal to the surface $x^{3}+y^{3}+3 x y z=3$ at $(1,2,-1)$.
(f) Show that the area between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$ is $\frac{16}{3} a^{2}$.
(g) Calculate the volume of the solid bounded by the planes $x=0, y=0$, $x+y+z=1$ and $z=0$.
(h) A particle moves along the curve $x=t^{3}+1, y=t^{2}, z=2 t+3$, where t is a time. Find the components of its velocity and acceleration at $t=1$ in the direction $\hat{i}+\hat{j}+3 \hat{k}$.
(i) Find $\operatorname{div} \vec{F}$ and curl \vec{F}, where $\vec{F}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$.
(j) State Stoke's theorem.

SECTION-B

2. Trace the folium of Descartes : $x^{3}+y^{3}=3$ axy stating the salient points.
3. Find the moment of inertia of one loop of the lemniscates: $r^{2}=a^{2} \cos 2 \theta$ about the initial line.
4. If $u=f(r)$ and $x=r \cos \theta, y=r \sin \theta$, then prove that:
$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f^{\prime \prime}(r)+\frac{1}{r} f^{\prime}(r)$
5. Find the maximum and minimum distances of the point $A(3,4,12)$ from the sphere $\mathrm{x}^{2}+y^{2}+\mathrm{z}^{2}=1$.

SECTION-C

6. Evaluate (i) $\int_{0}^{\infty} \int_{0}^{x} x e^{-\frac{x^{2}}{y}} d y d x$ by change of order of integration,
(ii) $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$.
7. (i) Find the directional derivative of $\phi(x, y, z)=x y^{2}+y z^{3}$ at the point $(2,-1,1)$.
(ii) A vector field is given by $\vec{F}=(\sin y) \hat{i}+x(1+\cos y) \hat{j}$. Evaluate the line integral over a circular path given by $x^{2}+y^{2}=a^{2}, z=0$.
8. Apply Green's theorem to evaluate : $\int_{C}[y(1-\sin x) d x+\cos x d y]$, where C is the plane triangle enclosed by the lines $y=0, x=\frac{\pi}{2}$ and $y=\frac{2}{\pi} x$.
9. Verify divergence theorem for $\vec{F}=x^{2} \hat{i}+z \hat{j}+y z \hat{k}$ taken over the curve bounded by $x=0, x=1, y=0, y=1, z=0$ and $z=1$.
